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Abstract

We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We
simply add a second order axial sag to the base grazing incidence cone-cone telescope.
The radius of curvature of the sag terms is the same on the primary surface and on the
secondary surface. The design is optimized so that the on-axis image spot at the focal
plane is minimized. The on-axis RMS spot diameter of two studied telescopes is less than
0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1
telescopes.

I. Introduction

This x-ray telescope design study was prompted by our desnre to find more practical and
cheaper telescopes for the Constellation-X mission (CSX)'. The CSX observatory is
comprised of 4 satellites. Each satellite has two telescopes on- board the hard x-ray
telescope (HXT) and the spectroscopic x-ray telescope (SXT ). The baseline SXT
telescope design is nested Wolter type 1 design (W). The entrance aperture diameter is
1.6 m. The telescope axial focal length is 10 m. The mirrors can be up to 300 mm long.
There are up to 167 mirror shells nested inside each other. The on-axis angular resolution
requirement for the SXT telescopes is 15” HPD at 1 KeV. The field of view (FOV) of the
SXT telescope is limited to 1.25 arc-minute.

Over the years several x-ray telescope configurations have been proposed. Wolter®
introduced paraboloid-hyperboloid typeldesigns. These designs have been widely used
in x-ray astronomy. The W type 1 designs consist of paraboloidal primary mirror and
confocal hyperboloidal secondary mirror. The telescope forms stigmatic on-axis image
from infinite object. The telescope manufacturmg errors always limit the on-axis image
quality. This design has finite amount of coma®. Other large aberrations are the ﬁeld
curvature and fifth order oblique spherical aberration. VanSpeybroeck and Chase’ have
performed through design study of W type 1 telescopes including the nested designs.

Wolter-Schwarzschild® (WS) designs offer the best image quality for narrow FOV
applications. These desngns are free of third order spherical aberration and coma. Chase
and VanSpeybroeck have done the basic design study of these telescopes. The surfaces
of the WS telescopes are complex functions of system parameters and are difficult to
fabricate and test.

Optical designs for cone-cone type 1 telescopes have been designed and built®®. The
advantage of this design is its simplicity. Since the telescope axial profiles do not have
curvature, the focusing power of the design is very limited. In case of the CSX/SXT
telescope, this aberration would consume large proportion of the resolution requirement.



Werner'® studied and designed several polynomial x-ray telescopes. He compensated the
on-axis spherical aberration against oblique spherical aberration. The resulting designs
have more uniform resolution across the field of view. These designs are good for
applications where large FOV is required.

Nariai'""'? followed a similar approach. He designed a telescope consisting of 2
hyperboloids. In his designs spherical aberration is used to compensate oblique spherical
aberration and coma is also minimized. Harvey'? used advanced features of ZEMAX lens
design software to optimize hyperboloid-hyperboloid telescope for solar applications.
These designs are excellent choices for missions where large FOV (~ 30 — 40 arc-
minutes) is required.

In this paper we introduce a new type of x-ray telescope. The cone-cone telescopes are
easiest to fabricate and test. Unfortunately, these designs have very poor on-axis
resolution. Our basic idea is to improve on-axis performance of the cone-cone design by
introducing second order axial curvature to the surfaces of the cone-cone telescope. We
also require that the curvature is the same both on the primary and secondary. The basic
concept is shown in Figure 1. In Section II we present the basic equations for the design
of cone-cone telescope. In Section III we introduce the surface equations of the Equal-
Curvature (EC) telescope and show how these surfaces are derived from surfaces with
purely spherical axial profiles. The derivation of basic parameters of the EC telescope is
shown in Section IV. The equations include the derivation of an equation for the radius of
curvature of the mirrors and show how it relates to basic system Pmameters. In Section V
we introduce our analysis code (Optical Surface Analysis Code'%), the surface equations
of the OSAC code, and the principles we used to study the EC telescopes using the
OSAC code.

In Section VI we present our study results for 2 EC designs (#1 and #2). The design #1
matches closely the size requirements of the CSX/SXT outer shell. The radial height of
this shell is 800 mm. The radial height of the design #2 is 200 mm. The grazing angles of
this design are 4 times shallower than the grazing angles of the design #1.

II. Design of Cone-Cone Telescope

The cone-cone telescope is shown in Figure 1.This design consists of a primary cone and
secondary cone. The intersection plane of the cones defines the system optical properties.
The radial height (ko) at this intersection plane and the axial distance (L) from this plane
to the focal plane define the basic optical properties of the design. The third important
design parameter is the grazing angle (ip;) incoming rays make with the surfaces. To
optimize the telescope effective area, the grazing angle on the primary and the secondary
are chosen to be equal. One needs also to select the axial lengths of the primary (L;) and
secondary (L) and the axial distances from the back of the primary to the intersection
plane (c;) and from the intersection plane to the secondary mirror (cz).



Under these assumptions the design work is trivial. The surface equations of the primary
(j=1) and secondary (j=2) can be expressed as:

h; = hy — z; tan(i ;). ¢))

If the grazing angles are identical on the surfaces, then the slope angle of the secondary is
ioz = 3 ig;. In the body centered coordinate system the radial heights of the surfaces are:
h; = h;, —z; tan(i ), 2

where h;9 and hy; are the radial heights of the surfaces at the axial midpoints of the
surfaces.

Since the cone-cone telescope does not have a second or higher order component on the
surface equations, the design can not focus the rays in its radial cross-section. A
collimated in-coming bundle of rays is bent towards the optical axis, but stays radially
collimated. A ring of rays hitting the primary and secondary is focused to an on-axis
point at different axial locations near the focal plane. The radial height of the image as a
function the primary mirror radial height is:

H, e =(h —h —(L- Ly)sin(4i,,)) / cos(4i,y), )

where Lo=h;/tan(4i;o) is the axial distance from the surface intersection to the focus of
rays that hit the primary-secondary intersection ring. The best focus location is chosen so
that the focused energy on both sides of the focal plane is equal. This corresponds to
primary mirror radial height

hlc = 'J(hlmaxz + hlminz)/2 (4)

where hjpqx and hyp;, are the maximum and minimum radial heights of the primary
Mirror.

Two parameters are needed to design a cone-cone telescope. We start with the L and ip;
parameters. The L parameter defines the axial distance from the focal plane to the
intersection of the surfaces and the i;9 parameter defines the grazing angle of the primary
mirror. The radial height at the intersection of the surfaces is roughly:

h

0i _approximation

= Ltan(4i,,) - 4)
The derivation of exact equation for Ay leads to second order equation. The solution is:

_—B+JB2—AC

A

where A, B, and C are expressed as function of basic parameters L and i;p and
dimensional parameters L; and ¢,;. The A, B, and C parameters are:

h, , (©)



A=1-(1-cos(4i,))* (7

B= (*Lj +6,)tan(iyg) ~ Lsin(4i,,)(1 - cos(diy,) ®

C- [(L, +cl)2 + clz]tanz(im) _
2
After hg is known, the mirror dimensions can be calculated from Egs. (1) or (2). To avoid

on-axis vignetting, the dimensional parameters L, and c; have to be chosen so that the on-
axis rays intersecting the primary mirror will also intersect the secondary mirror.

L? sin®(4i,). )

II1. Surface Equations of Equal-Sag Telescope

To improve the on-axis focusing capability of the cone-cone telescope, we add slight
axial sag to the cone surfaces. For grazing incidence mirrors the sag is very small and can
conveniently be approximated by using spherical axial profile. This profile is then rotated
about the optical axis to produce the surface of revolution. A cross-sectional view of the
resulting surfaces is illustrated in Figure 1. Assuming spherical cross-section and the
same radius of curvature (R) on the primary and secondary, the surface equations of the
primary mirror (j=1) and secondary mirror (j=2) in the body centered coordinate system
of the cones are:

h = hJO - RCOS(ijo) + ‘JRZ - (zj_.\'ph + RSin(ijo ))2

Since the radius of the spherical surface is very large compared to the axial coordinate,

equation can be approximated as:
2

h,  =~h, - tan(i ) - _ L 11
j_sph jo ~ Zj_sph 0 T S Rcos’i . (11)
J

(10)

j_sph

Third and higher order terms in z; ,,, are dropped in the expansion. Equation (11) is
simply the equation of a cone with a second order correction added to the cone surface.

The design and analysis of EC telescopes is based on Eq. (11). The surface equations of
the EC telescope can now be abbreviated by:

h; =hg,+a,,z,+a,,cz; | (12)
where a;; = -tan(ip), az =1/2 cos’( ijp)), and c = curvature of the surfaces (=1/R).
IV. Design parameters for Equal-Sag Telescopes

To design an EC telescope the coefficients of the surface equations need to be described
in terms of more convenient system parameters. For x-ray telescopes best choices are the
radial height at the surface intersection of the mirrors, the grazing angles at the
intersection of the mirrors and the telescope axial length. There are 6 coefficients in the
surface equations of the primary and secondary. As for the cone-cone telescope, we select



the grazing angle ijo of the primary mirror and the axial focal length L of the telescope to
be our input parameters. We also require that the grazing angles of the primary and
secondary at the surface intersection of the primary and secondary mirror are equal.
Under this condition ay; = -tan (3 i10) and azj = 142 cos(3 ij0)). The radial height h at the
surface intersection point and the curvature c of the surfaces are derived from the
focusing requirement we set for the telescope.

Curvature c¢ can be solved from the minimum on-axis image requirement. To find the
equations for the minimum on-axis image blur, approximate transverse ray equations are
first derived for the system. The design is symmetric about the optical axis and only an
arbitrary on-axis ray is traced and an equation for the radial component of the ray at the
image plane is derived. The radial height (H) of an on-axis ray in terms of Hp = (hg-L
tan(4ijp)), ij0, R, and L is:

25 1 8cL 13
H = Hy +2z,[~i,, — =i}, + cL(4 +66i})] + cz} (—=+—). (13)
3 2 i,
Only the second order terms in z; are kept in Eq. (13). Terms up to third order in ij( are
kept in the first order z;,-coefficient and —1* and 0" order terms are kept in zlz-coefﬁcient.
Eq. (13) is derived in Appendix A.

Curvature ¢ could be calculated from Eq. (13) by deriving first the radial image height

RMS value and, then, solving the equation for curvature c. A simpler derivation is shown

in this paper. Since Eq. (13) is quadratic in z1 the image radial height goes through

minimum when the primary mirror axial coordinate z1 changes from its maximum value

to its minimum value. Assuming that the minimum H value occurs at the primary mirror

axial center point (z/= -Lp/2-cp), then, by taking the derivative of Eq. (13) with respect

to z1 and solving for c, we find:

Vs 4 L

ho ™ 7g o N o 2 +cl) (14)
4L 16L?

In Eq.(14) only the 2™ order (I/L) terms are kept and also iso terms up to 3™ order are
kept in the first part of the equation and up to 1% order in the second part of the equation.

C=

Approximate solution for the hy parameter can be found from Eq. (13). Since Eq. (13) is
quadratic, image radial height should reach 0 value when z;; = -L/4-c; or z;2= -3L,/4-c;.
Using the first root we find for hy:

8cL

. . 25, :
hy = Ltan(4iyy) + z,,[i,y + =iy, — cL(4 + 66i})] + cz}, (-5 - —i—). (15)
10

3
V. Surface Equations of OSAC

We used the Optical Surface Analysis Code (OSAC) to ray trace the resulting optical
designs. In OSAC the surface equations of grazing incidence design are given in the
Body Centered Coordinate system (BCC) shown in Figure 1 in the following format:



pz\[pjj +2K;z- P,2%, (16)
where 0p; is the radial height at the axial midpdint of the surface, and Kj and P; are
constants. A second order correction term can be added to the base surface using
OSAC’s Legendre polynomials. The second order Legendre term is:

d,, 2
sagj =—2—((3z£)2 —l), . (17)

J

where L; is the length of the surface and d; is constant.

The OSAC parameters for cone surfaces can be simply calculated from Eq.(1) by
squaring the equation.

The OSAC input parameters for the EC telescope can now be expressed using Eqs.(16)
and (17). The parameters are derived from Eqs. (1) and (12) by translating the origin of
the coordinate to the BCC coordinate system of the surface. The results for the surface
parameters are:

g b (18)
2/ 24Rcos’(i;)
d, (19)
Po; = Ay +T
d,,
K; = =4, (A, +=7) (20)
Y @1)
where
L.
L (—Ej~+cj)2
j .
A, =h, i(—2—+cj)tan(zj0)—m (22)
o
L,
J
A,; =tan(i o) F 7“}
.= o)t
2, = tan(i o) Reos' i) (23)

In Egs. (21) and (22) the upper sign refers to primary mirror (j=1) and the lower sign
refers to the secondary mirror (j=2).

VI. Design and Optical Performance of Equal-Sag Telescope



We have studied EC telescope designs that closely match the size of the Constellation-x
SXT telescopes. For this paper we selected two designs from the nested set of
Constellation-x telescopes. The basic dimensions and parameters are listed in Tables 1
and 2 for both the EC and equivalent W telescopes. The radial heights of these designs at
the primary-secondary intersection plane are 800 mm and 200 mm. The W designs are
equivalent with the EC designs in the sense that they have the same radial height A at the
surface intersection point and the same axial focal length L.

The shape of the axial profile of the EC telescope is purely second order (see Eq.(17)).
The axial sag varies from —d»/2 to d; along the optical axis from the center of the surface
to the maximum or minimum axial value. The d, coefficient is slightly larger for the
secondary mirror. This is because the sag was designed so that the radius of curvature (R)
on both surfaces would be equal. The radii of curvature of the EC design #1 and #2 are
1.98 km and 7.90km, respectively!

In Figure 2 we plot radial height difference between the EC and W telescopes. At the
primary-secondary intersection point there is no height difference. Moving towards the
front of the primary or towards the back of the secondary, the height differences increase
to 0.7 um and 0.2 um for the designs #1 and #2, respectively.

The axial profiles of the EC designs are nearly spherical. The maximum radial height
difference between EC equations (Eq.(12)) and spherical profiles (Eq. (10)) is negligible
since the third and higher order terms dropped in Eq.(12) would be very small. These
terms are proportional to (z/R)" where R is many orders of magnitude larger than z.

Ray trace results indicate that the derived equations do not perfectly predict the location
of on-axis best focus. The focus location is off 4.7 um and 5.7 um for the EC designs #1
and #2, respectively. The small error in the focus location is due to the approximations in
the derivation of the curvature.

In Figure 3 the RMS spot diameter is plotted as a function of half-field angle at gaussian
focal plane for the telescopes. Dash curve plots the spot diameter for the EC design #1
and the dash-dot curve plots the spot size for the W design #1. The W design provides
slightly improved performance across the field. The on-axis RMS spot diameter of the
EC telescope is 0.2 arc-seconds. The performance of EC design #2 and W design #2 is
practically the same across the field-of view. The on-axis image diameter of the EC
telescope is 0.05 arc-seconds.

The RMS image diameters at the best focal surface are shown in Figure 4. The RMS spot
diameters behave similarly. For both designs #1 and #2, W telescope slightly outperforms
the EC telescope. If we were to take into account manufacturing tolerances and alignment
requirements (half power diameter of 15 arc-second for Constellation-X telescopes), no
differences in the telescope performance could be seen.

VII. Conclusions



The on-axis and off-axis optical performance of the EC telescopes is surprisingly good
compared to equivalent W typel telescope. For the grazing angles close to 1 degrees W
designs are slightly better in terms of RMS spot diameter and for the gazing angles
around 0.3 degrees or smaller there is no practically difference in the optical performance
between the telescopes.

The EC telescopes have several advantages over the W telescopes. They are easier to
manufacture since the axial profiles are spherical. The polishing tools can be shaped to
closely match the surface. The superpolishing of the spherical surface should be easier
resulting in smoother surface quality and reduced microroughness.

We believe that the EC designs can be very cost effective. Since the primary and
secondary mirror have the same axial sag, a single mandrel could be used to replicate
both primary mirror and secondary mirror segments for the CSX/SXT telescopes. This
would cut in half the mandrels needed for the project.

The off-axis performance of the designs could be improved by not optimizing the on-axis
image size as done in this study, but optimizing a specific off-axis image location.
Another way of improving the off-axis performance is to let the curvature vary either on
the primary or on the secondary. The resulting telescope would not be an EC design. We
will explore these options in the future.

Appendix A: Derivation of Radial Image Coordinate

To derive the radial image coordinate we need to analytically trace a ray through the
telescope and solve the equations for the image coordinate. Figure 1 illustrates the
principle. A ray hits the primary at a point P. The coordinates and slope angle at this
point are h;, z;, and i;. The reflected ray makes an angle 2i, with the optical axis. After
the reflection the ray hits the secondary at a point S. The coordinates and slope at this
point are h, z», i;. After the reflection the ray strikes the focal plane at point H.
Assuming that the primary mirror (j=1I) and secondary mirror (j=2) have equal amount of
curvature on their axial profiles, then, the surfaces can be expressed in the telescope
coordinate system as:

h; =hy +a,;z; +a,cz;. (Al)
The coordinate system is centered on optical axis at the intersection plane of the mirrors.
The a;; and ay; coefficients are defined in Eq.(12). The axial slope angle i; of the surfaces
is just the derivative of Eq. (Al)

tan(i;) = ~a,; —2a,,cz;. (A2)
To simplify the derivation we express the surface equations in parametric form as a

function on quantity
Aij =i, —i, (A3)



where i; is the slope angle of the primary mirror and iy is the slope angle of the primary
at the primary-secondary intersection point. We can solve Eq.(A2) for the primary mirror
axial coordinate and similarly write an equation for the secondary mirror:

22

VR .
cz; = Ai; (1~ 2)+Aljlj0 (Ad)

The slope angle of the secondary izp =3ij0. In Eq.(A4) we have expanded trigonometric
ijo terms and kept terms up to 3" order in first order Ai; term and first order in second
order Ai;. The same approximations will be applied to all the equations presented below.
The radial coordinates h; can be derived by substituting Eq.(A4) into Eq.(12), keeping
only 2™ order terms in 4i ; and expanding the coefficients. We get:

ch; =~Ai (i —ifo)—Aif-;—. (A3)
First, we need to derive for the traced ray the secondary mirror coordinates as a function
of the primary mirror coordinates. Since we know the slope angle of the reflected ray we
can write an equation;

h, +z, tan(2i;) = h, + z, tan(2i)). (A6)

Deriving approximated equation for tan(2i;) from Eq.(2) and substituting the resulting
equation and Eqs.(A4) and (AS) into Eq.(6), we solve Eq.(6) for Ai;

. A
Ai, = —Ai, ———4. : (A7)
Lo
Substituting Eq. (A7) into secondary mirror equations (A4) and (A5) we find for z; and
hz:
9. 2 4 (A8)
cz, = —Aij(1- 51120) - Ai} =
10
e 9. . 23 (A9)
c(h, = hy) = Ai, (3, - 51130) +Ail >
Tracing the ray from the secondary to image plane give us a equation for the radial image
coordinate:
H=h,-(L-z,)tan(c), (A10)

where o (=24i,-24i;) is angle between reflected ray after second reflection and optical
axis. After deriving an equation for fan( ) and substituting Eqs. (A8) and (A9) into
Eq.(A10), we get:

. . 47 .3 .2 ) R 8L
H- Ho = All[R(—lIO - _6—110) + L(4 + 64’10) + Al] [‘3 +._], (Al 1)

Lo
where Hp=hy-L tan(4ip;). Finally, solving Eq.(A4) for Ai; and substituting into Eq. (A11)

we get the radial image height as a function of primary mirror axial coordinate:

25 1 8L Al2
H = Hy + e, [R(-iyg = i) + L(4-+ 613)] + czzf(—?:»_L). (a12)

Lo
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